Mechanical properties of human tendon and their age dependence.
نویسندگان
چکیده
There are no previously published data on changes in the mechanical behaviors of human tendon from maturation in the second decade to senectitude in the seventh decade or thereafter. In this study, 44 tendons from individuals ranging in age from 16 to 88 yr were subjected to an extensive series of mechanical tests which included preconditioning, extensions at strain rates of 100 percent/s, 1 percent/s, and 0.01 percent/s, and stress relaxation with cyclic and constant extensions. Pairs of extensions at 1 percent/s were run throughout the protocol to evaluate the repeatability of tissue response. It was found that these responses changed little for any single sample within a pair of such tests; however, throughout the protocol, the peak stresses and moduli decreased. Extensions at different rates revealed a definite rate dependency of tendon responses with sample modulus being directly related to extension rate and slightly less hysteresis at 1 percent/s than at 100 percent/s or 0.01 percent/s. The load relaxation in samples subjected to either cyclic or constant extensions was generally best described by a linear function of the logarithm of time. The rate of relaxation with constant extension varied little with extension magnitude. The rate of relaxation in the cyclic tests was greater at 10 Hz than at 0.1 Hz. The results indicate that subject age has no effect on tendon modulus and a very small effect on hysteresis and relaxation. Extensive information on subject history was not available in this study for correlation with mechanical responses so that an age effect may have been masked by other variables, possibly health, diet, disease, or exercise.
منابع مشابه
Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading
Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechan...
متن کاملIn vivo human tendon mechanical properties: effect of resistance training in old age.
Recent advances in ultrasound scanning have made it possible to obtain the mechanical properties of human tendons in vivo. Application of the in vivo method in elderly individuals showed that their patellar tendons stiffened in response to a 14-week resistance training program by approximately 65% both structurally and materially. The rate of muscle torque development increased by approximately...
متن کاملAdipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits
Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF), derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differ...
متن کاملRegional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology.
The incidence of tendon degeneration and rupture increases with advancing age. The mechanisms underlying this increased risk remain unknown but may arise because of age-related changes in tendon mechanical properties and structure. Our purpose was to determine the effect of aging on tendon mechanical properties and collagen fibril morphology. Regional mechanical properties and collagen fibril c...
متن کاملDynamic Mechanical Properties of Tendon Repair Tissue are Unaffected by Aging
Introduction Tendon injuries are common, especially in the aging population, and incomplete tendon healing is a well-established problem. Furthermore, aging tendons are at increased risk for injury due to changes in their mechanical properties and structural integrity. Age has also been correlated with poorer clinical outcomes for repaired tendons, which may be attributed to an inferior repair ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 106 2 شماره
صفحات -
تاریخ انتشار 1984